Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jinan Zhao, ${ }^{\text {a }}$ Huiqin Zhang ${ }^{\text {b }}$ and Seik Weng $\mathrm{Ng}^{\mathrm{c} *}$

${ }^{\text {a }}$ Pindingshan Institute of Technology, Pindingshan 467004, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450047, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.036$
$w R$ factor $=0.100$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
μ-Oxo-di- μ-sulfato-bis[aqua(1,10-phenanthroline$\left.\kappa^{2} N, N^{\prime}\right)$ iron(III)] tetrahydrate

The two aqua(1,10-phenanthroline)iron(III) parts of the title compound, $\left[\mathrm{Fe}_{2} \mathrm{O}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, are linked through one oxo and two sulfate bridges. Both metal centres show octahedral coordination, in which the three O atoms that are involved in bridging occupy the fac sites. Hydrogen bonds link adjacent dinuclear complexes into a three-dimensional network.

Comment

Octahedral transition metal complexes with an odd number of electrons for the metal are known to undergo temperatureand pressure-induced spin crossover, and iron(III) complexes with bidentate N -donor ligands (e.g. 1,10-phenanroline, phen) are the most extensively studied (Chu et al., 2001; MacLean et al., 2003; Wang et al., 2006). For iron(III) sulfate, a μ-oxo complex is known; this octahydrate has two bis(1,10-phenan-throline)(sulfato- O)iron(III) parts connected through the oxo bridge (Odoko \& Okabe, 2005). A similar synthesis has yielded the title tetrahydrate, (I). However, the two aqua(1,10phenanthroline)iron(III) parts of (I) are connected through a μ-oxo as well as through two sulfate groups (Fig. 1). The three O atoms that are involved in bridging occupy fac sites. Adjacent molecules are linked by hydrogen bonds (Table 2) into a three-dimensional network.

Experimental

1,10-Phenanthroline ($0.35 \mathrm{~g}, 2.0 \mathrm{mmol}$) dissolved in ethanol (15 ml) was mixed with iron(III) sulfate ($0.28 \mathrm{~g}, 1.0 \mathrm{mmol}$) dissolved in 95% ethanol (10 ml). The mixture was set aside. After one week, red crystals of (I) separated from the solution (yield 80%). The water in the structure possibly comes from the air as the reaction was carried out in the open.

Received 12 July 2006
Accepted 14 July 2006
\qquad

Crystal data

$\left[\mathrm{Fe}_{2} \mathrm{O}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]--$
$4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=788.32$
Triclinic, $P \overline{1}$
$a=8.7682(7) \AA$
$b=12.253(1) \AA$
$c=14.736(1) \AA$
$\alpha=103.289(1)^{\circ}$
$\beta=100.135(1)^{\circ}$

Data collection
Bruker APEX-II area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.749, T_{\text {max }}=0.816$
$\gamma=93.053(1)^{\circ}$
$V=1509.5(2) \AA^{3}$
$Z=2$
$D_{x}=1.734 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.18 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Block, red
$0.26 \times 0.22 \times 0.18 \mathrm{~mm}$

12825 measured reflections 6747 independent reflections 5205 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.100$
$S=1.03$
6747 reflections
460 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1
The structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 6 w-\mathrm{H} 6 w 1 \cdots \mathrm{O} 7$	$0.85(1)$	$2.14(1)$	$2.974(4)$	$171(4)$
$\mathrm{O} 6 w-\mathrm{H} 6 w 2 \cdots \mathrm{O} 8^{\text {iv }}$	$0.85(1)$	$2.01(2)$	$2.840(4)$	$168(4)$
Symmetry codes: (i)	$-x+1,-y+1,-z+1 ;$	(ii)	$-x+2,-y+1,-z+1 ;$	(iii)
$x-1, y, z ;$ (iv) $-x+2,-y+2,-z+2$.				

Carbon-bound H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ $=0.93 \AA$, and were included in the refinement in the riding-model approximation, with $U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Water H atoms were located in a difference Fourier map and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85(1)$ and $\mathrm{H} \cdots \mathrm{H}=1.39(1) \AA$. An alternative position of $\mathrm{H} 5 W 2$ at $(0.520,0.896,1.083)$ would lead to better geometric parameters of the hydrogen bond. However, the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle at $\mathrm{O} 5 W$ would then be too large $\left(135^{\circ}\right)$.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Luoyang Normal College for the diffraction measurements. We thank Pindingshan Institute of Technology and the University of Malaya for supporting this study.

References

Bruker (2004). SAINT (Version 7.12a), SHELXTL (Version 5) and SMART (Version 7.12a). Bruker AXS Inc., Madison, Winsonsin, USA.
Chu, D.-Q., Xu, J.-Q., Duan, L.-M., Wang, T.-G., Tang, A.-Q. \& Ye, L. (2001). Eur. J. Inorg. Chem. pp. 1135-1137.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
MacLean, E. J., McGrath, C. M., O’Connor, C. J., Sangregorio, C., Seddon, J. M. W., Sinn, E., Sowrey, F. E., Teat, S. J., Terry, A. E., Vaughan, G. B. M. \& Young, N. A. (2003). Chem. Eur. J. 9, 5314-5322.
Odoko, M. \& Okabe, N. (2005). Acta Cryst. E61, m587-m589.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, Q.-X., Jiao, K., Sun, W., Jian, F.-F. \& Hu, X. (2006). Eur. J. Inorg. Chem. pp. 1838-1845.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

